Rastreamento da disseminação metastática precoce do câncer de pulmão no TRACERx usando ctDNA

blog

LarLar / blog / Rastreamento da disseminação metastática precoce do câncer de pulmão no TRACERx usando ctDNA

Apr 30, 2023

Rastreamento da disseminação metastática precoce do câncer de pulmão no TRACERx usando ctDNA

Natureza volume 616, páginas

Nature volume 616, páginas 553–562 (2023) Citar este artigo

17k acessos

5 Citações

421 Altmétrico

Detalhes das métricas

O DNA tumoral circulante (ctDNA) pode ser usado para detectar e traçar o perfil das células tumorais residuais que persistem após a terapia de intenção curativa1. O estudo de grandes coortes de pacientes incorporando amostragem de plasma longitudinal e acompanhamento prolongado é necessário para determinar o papel do ctDNA como um biomarcador filogenético de recaída no câncer de pulmão de células não pequenas (NSCLC) em estágio inicial. Aqui desenvolvemos métodos de ctDNA rastreando uma média de 200 mutações identificadas em tecido NSCLC ressecado em 1.069 amostras de plasma coletadas de 197 pacientes inscritos no estudo TRACERx2. A falta de detecção pré-operatória de ctDNA distinguiu o adenocarcinoma de pulmão biologicamente indolente com bom resultado clínico. As análises plasmáticas pós-operatórias foram interpretadas no contexto da vigilância radiológica padrão e administração de terapia adjuvante citotóxica. Análises históricas de amostras de plasma coletadas até 120 dias após a cirurgia revelaram detecção de ctDNA em 25% dos pacientes, incluindo 49% de todos os pacientes que tiveram recaída clínica; A vigilância de ctDNA de 3 a 6 meses identificou uma recaída iminente da doença em mais 20% dos pacientes com marcos negativos. Desenvolvemos uma ferramenta bioinformática (ECLIPSE) para rastreamento não invasivo da arquitetura subclonal em níveis baixos de ctDNA. O ECLIPSE identificou pacientes com disseminação metastática policlonal, que foi associada a um desfecho clínico ruim. Ao medir as frações de células cancerígenas subclonais no plasma pré-operatório, descobrimos que os subclones que semeiam metástases futuras foram significativamente mais expandidos em comparação com os subclones não metastáticos. Nossas descobertas apoiarão os avanços dos estudos (neo) adjuvantes e fornecerão informações sobre o processo de disseminação metastática usando biópsia líquida de baixo nível de ctDNA.

Esta é uma prévia do conteúdo da assinatura, acesse pela sua instituição

Artigos de acesso aberto que citam este artigo.

Nature Open Access 12 de abril de 2023

Nature Open Access 12 de abril de 2023

Acesse a Nature e outras 54 revistas do Portfólio Nature

Obtenha o Nature+, nossa assinatura de acesso on-line de melhor valor

US$ 29,99 / 30 dias

cancele a qualquer momento

Assine esta revista

Receba 51 edições impressas e acesso online

$ 199,00 por ano

apenas US$ 3,90 por edição

Alugue ou compre este artigo

Obtenha apenas este artigo pelo tempo que precisar

$ 39,95

Os preços podem estar sujeitos a impostos locais que são calculados durante o checkout

Os arquivos de sequenciamento de cfDNA, dados de RNA-seq e dados de sequenciamento de exoma tumoral multirregional (em cada caso do estudo TRACERx) usados ​​ou analisados ​​durante este estudo foram depositados no European Genome-phenome Archive (EGA), hospedado pelo Instituto Europeu de Bioinformática (EBI) e o Centro de Regulação Genômica (CRG) sob os códigos de acesso EGAS00001006494, EGAS00001006517 e EGAS00001006494 e está sob acesso controlado devido à natureza dos dados e acordos de parceria comercial. Detalhes sobre como solicitar acesso estão disponíveis na página vinculada.

O ECLIPSE está disponível como um pacote R para instalação no github (https://github.com/amf71/ECLIPSE), disponível apenas para fins de pesquisa acadêmica não comercial. O código usado para produzir as figuras neste documento está disponível mediante solicitação.

Moding, EJ, Nabet, BY, Alizadeh, AA & Diehn, M. Detecção de restos líquidos de tumores sólidos: doença residual mínima do DNA tumoral circulante. Câncer Descoberta 11, 2968–2986 (2021).

Artigo CAS PubMed PubMed Central Google Scholar

 0.1 threshold meaning that they were deemed negative for ctDNA. B. Postoperative caller P values observed in n = 5 patients who had relapse of their NSCLC. 1 of 13 calls was made between caller P values of 0.1 and 0.01, the remaining 12 calls were made at a caller P value less than 0.01. C. Preoperative ctDNA calls from pilot cohort; 7 patients had positive ctDNA in plasma prior to surgery, all calls were made at caller P values < 0.01. D. In-silico simulation analysis to assess MRD caller specificity. 3157 mock MRD panels were generated within the evaluable pilot patient libraries and MRD caller P values were assessed. At a caller P value < 0.1 threshold, 121/3157 simulated mock panels were ctDNA positive (in-silico specificity of 96.2%); at a caller P value threshold < 0.01, 22/3157 simulated mock panels were ctDNA positive (in-silico specificity of 99.3%). E-F. Analytical validation of 50 variant MRD detection panels. E. Fragmented DNA with a known single nucleotide polymorphism (SNP) profile was spiked into a second background of fragmented DNA with a different SNP profile and a patient-specific panel targeted 50 alternate positions present in spiked-in DNA. 559 data points were generated across different DNA input quantities indicated, to establish the limit of detection plots. The Y axis and centre of the error bars demonstrate sensitivity (defined as the proportion of all repeats that resulted in MRD detection using a caller P value of 0.01). The confidence intervals on the plot are Clopper-Pearson confidence intervals (95% CIs). The X axis shows the quantity of variant germline DNA that was spiked into each repeat expressed as a percentage of total DNA in that sample. F. Circulating tumour DNA samples with high variant allele fractions were spiked into a different cell-free DNA background. Variant positions in ctDNA were targeted with a 50 variant panel; 100 data points were generated across the DNA input quantities indicated. Axes and error bars are the same as (E). G. Data from analyses of 48 blank samples donated by 24 healthy participants, caller P values are displayed. H. Barplots demonstrating the intended allele frequencies and the measured allele frequencies in the different spike-ins presented in part (E) and part (F) only data from variant DNA positive samples are presented. The colours of the barplot represent different DNA input masses as shown by the legend. The error bars on the plot represent the mean value of all positive spike-in samples +/− standard deviation of the values. Where the error bar is absent, this is because at this spike-in level and DNA input mass, only one positive sample was observed. Where the error bar led to an observed mean AF less than 0, the error bar was stopped at 0 for visualization purposes (the 0.05% spike-in, 2 ng input mass case). The horizontal dashed lines correspond to 0.1%, 0.05%, and 0.01% spike-in categories. Each data point is represented on the plots by a circle. n = 369 variant DNA positive samples displayed in LOD1 barchart, n = 93 variant DNA positive samples displayed in LOD2 barchart. I. Comparison between the content of cell-free DNA input into ddPCR reactions (yellow) and AMP PCR reactions (blue). Hinges correspond to first and third quartiles, whiskers extend to the largest/smallest value no further than 1.5x the interquartile range. Centre lines represent medians. Each dot on the plot represents a data point, lines connect paired samples from the same patient. Significantly more cell-free DNA was input into ddPCR reactions (paired two-sided Wilcoxon-test P = 0.01366). J. Orthogonal comparison between ctDNA detection based on AMP panels used in TRACERx and ddPCR against a single clonal variant. ddPCR ctDNA positive call threshold was two mutant droplets (bottom table) and one mutant droplet (top table). Percentage positive agreement (PPA) and percentage negative agreement (NPA) using ddPCR as the comparator is displayed in the table. Two-sided Fisher's test P values are demonstrated under the cross tables. K. A 300 mutation patient-specific panel was designed and applied to 10 ng DNA samples containing spike-in variant levels from 0% to 0.1%. In silico sub-sampling of the 300 mutations was performed (3 x 200 mutation in silico panels, 3x 100 mutation in silico panels and 3x 50 mutation in silico panels, see methods) and sensitivities are categorized by the number of mutations targeted by the panel./p>0.1% clonal ctDNA level & >=10 ng DNA input (high subclone sensitivity samples) with ECLIPSE and those measured with multi-region tissue sequencing (M-seq) at surgery (N = 71 patients and 684 subclones included). B. Copy number unaware CCFs calculated only using VAFs (methods) compared to tissue CCF from M-seq. All preoperative samples with phylogenetic data, >0.1% clonal ctDNA level & >=10 ng DNA input (high subclone sensitivity samples) were included (N = 71 patients and 684 subclones included). C. A scatter plot demonstrating the relationship between clonal ctDNA level and the proportion of multi-region tumour exome (M-seq) defined subclones detected by ECLIPSE based on varying subclonal cancer cell fractions as indicated, loess lines are fitted to the plots, n = 117 ctDNA positive preoperative samples. D. A comparison of preoperative plasma CCFs and the average CCFs across all tissue regions sampled at surgery for clones that were unique to one tumour tissue region and for clones that were distributed across more than two tumour tissue regions. N = 71 patients and 684 subclones included. A Wilcoxon-test was used to compare groups. E. A comparison of preoperative plasma CCFs and the average CCFs across all tissue regions sampled at surgery for clones that were unique to one tumour tissue region separated between small (<20 cm3), medium (>20 cm3 & <100 cm3), and large (>100 cm3) tumours as measured on preoperative PET/CT scans. N = 71 patients and 684 subclones included. A Wilcoxon-test was used to compare groups. F. A comparison of detection rates in preoperative plasma for 20% CCF subclones across a range of clonal ctDNA levels split by whether the subclones were spread across multiple primary tumour tissue regions or were limited to only a single primary tumour tissue region. 1924 subclones were assessed in 197 preoperative plasma samples. G. A map of tumour clones with areas of multi-regional tissue sampling indicated and clones which are over- and undersampled highlighted. Most of the undersampled clones are in fact not in the sampled areas creating a bias towards oversampling in clones which we are able to detect, an effect also called the ‘winner's curse’. H. A ROC curve describing the sensitivity and specificity of detecting clonal illusion mutations using plasma-based CCFs with 95% confidence intervals generated using bootstrapping across 500-fold cross-validation (N = 71 tumours)./p>